MEDACS

UNIVERSAL OR FREQUENCY INPUT
 SINGLE CHANNEL OR DUAL CHANNEL
 DISPLAY OPTIONS
 GALVANIC ISOLATION
 UNIQUE POWER / COMMS RAIL SYSTEM
 OPTIONAL MATHS FUNCTIONS
 RS485 COMMS OR PUSH BUTTON SET UP
 ETHERNET COMPATIBLE

INTRODUCTION

The MEDACS is a totally new concept in DIN rail signal conditioning and consists of a family of DIN rail modules, each one having a high degree of functionality and configurability. They accept all common signals and have a choice of output options including an isolated (0 or 4 to 20) mA re-transmission signal, change over trip relay, twin normally open relays or various combinations. For high density systems, dual channel versions are available or for systems that require more local input, single channel versions with an in-built keypad and digital display are available where functions can be accessed via the front panel keys.

Each unit comes complete with a RS485 serial communications port which enables MEDACS to be integrated into a complete process control system. Unit wiring is simplified and speeded up by using the integral 'power / comms rail' system provided with each unit which removes the need for complicated and expensive back plane wiring.

The functionality is further enhanced by the optional inclusion of our unique Transfer Function Module Library (TFML) which enables complex maths functions between input and output to be loaded into the device. These can be PID Control, tank linearisation curves, signal accumulators, maximum and minimum data logging etc. all of which can be downloaded from our website www.status.co.uk Alternatively we can generate customversions to match your specific application and multiple devices can be grouped together to provide solutions for complex applications requiring more variables.

TRANSFER FUNCTION MODULE LIBRARY (TFML)

TFML has been designed to offer the user enhanced power and flexibility by providing a mechanism whereby each unit can be customised to perform a particular function.

Common TFML's are listed below and are available from our web site. They are simply downloaded into the MEDACS unit.

USER LINEARISATION CHARACTERISTICS
Cylindrical tank characteristic
TRANSFER FUNCTION MODULE LIBRARY PROGRAMS
PID function block for current re-transmission
PID function block for relay
Rate of change limiter
Peak Pick/Hold
Valley Pick/Hold
$(A+B) / 2$
A - B
Sensor Validation

SPECIFICATIONS @ $20^{\circ} \mathrm{C}$

INPUTS - UNIVERSAL INPUT OVERVIEW

SENSOR	RANGE
mA	$(4$ to 20$), \pm 20, \pm 10$
RTD	Pt100, Ni120
TC	$\mathrm{K}, \mathrm{J}, \mathrm{T}, \mathrm{R}, \mathrm{S}, \mathrm{E}, \mathrm{N}, \mathrm{L}, \mathrm{B}$
Volts	$\pm 0.1, \pm 10, \pm 1, \pm 5,(1$ to5 $)$
CURRENT INPUT	
Slidewire*	
Base Accuracy Thermal Drift Input Impedance Linearisation	$0.05 \% \mathrm{FS} \pm 0.05 \%$ of reading
	$0.02 \% /{ }^{\circ} \mathrm{C}$
	20 w
	Linear, Square root, Power $3 / 2$,
Power $5 / 2$, Custom	

Two isolated and regulated 19 V power supplies are available to power the current loops, and are capable of sourcing 25 mA for each channel.

RTD

Sensor Range
Linearisation
Basic Accuracy
Thermal Drift
Excitation Current
Lead Resistance Effect
Max. Lead Resistance
(-200 to 850$)^{\circ} \mathrm{C}$
BS EN 60751/JISC 1604/Custom
$0.1^{\circ} \mathrm{C} \pm 0.05 \%$ of reading
Zero $\quad \pm 0.004 \mathrm{w} /{ }^{\circ} \mathrm{C}$
Span $\quad 0.01 \% /{ }^{\circ} \mathrm{C}$
1 mA
$0.002{ }^{\circ} \mathrm{C} / \mathrm{w}$
$50 \mathrm{w} / \mathrm{leg}$
THERMOCOUPLE

TYPE	RANGE (${ }^{\circ} \mathrm{C}$)
K	-200 to 1370
J	-200 to 1200
T	-210 to 400
R* \bigcirc	-10 to 1760
$S^{*} 0$	-10 to 1760
E	-200 to 1000
L	-100 to 600
N	-180 to 1300
$\mathrm{B}^{*} \sim$	-10 to 1650
Custom	-1999 to 9999
Accuracy	$\pm 0.04 \%$ FS $\pm 0.04 \%$ reading or $\pm 0.5^{\circ} \mathrm{C}$, whichever is greater
Linearisation	BS 4937/IEC 584-3/Custom
Cold Junction Error	$\pm 0.5^{\circ} \mathrm{C}$
Cold Junction Tracking	$0.05{ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$
Cold Junction Range	(-20 to 70) ${ }^{\circ} \mathrm{C}$
Thermal Drift	Zero $\quad 4 \mathrm{~m} /{ }^{\circ} \mathrm{C}$
	Span $0.02 \% /{ }^{\circ} \mathrm{C}$

*NOTES:
1 Accuracy true for (800 to 1760) ${ }^{\circ} \mathrm{C}$
2 Accuracy true for (400 to 1650) ${ }^{\circ} \mathrm{C}$
VOLTAGE INPUT
Range $\pm 100 \mathrm{mV}, \pm 1 \mathrm{~V}, \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V}$,
Accuracy
Thermal drift
Input impedance
Linearisation
*Slidewire
(1 to 5) V
$0.04 \% \mathrm{FS} \pm 0.04 \%$ of reading
$0.02 \% /{ }^{\circ} \mathrm{C}$
1 Mw
Linear, Square root, Power $3 / 2$,
Power $5 / 2$, Custom
3 wire Potentiometer inputs can be accommodated between
50 w \& 10 Kw

FREQUENCY INPUTS

A wide range of input types and frequencies can be accommodated without the need for Switches or Jumpers. Totalise functions are a standard feature on the single channel version and are stored during power down.

Input Types Namur, low Voltage (>10 mV), TTL, Open Collector, PFC 0.1 Hz to 20 kHz .
0.003% FS

DIGITAL INPUTS
Single channel units can also accept two external digital inputs which can be TTL, Open Collector, 24V DC Logic or Potential Free Contacts. Dig 1 is dedicated to a reset/clear function enabled by the configuration software whilst Dig 2 is reserved for use with TFML. Both digitals can be read via the communications and used to signal events.

OUTPUTS

Two output option types are available per channel, relay or current re-transmission. The configuration of these will vary depending on whether they are fitted on the single or dual channel transmitter.

CURRENT RE-TRANSMISSION OUTPUTS

Output Range
Single Channel (0 to 10$) \mathrm{mA}$, (0 to 20)mA,
(4 to 20) mA source or sink
Dual Channel
(4 to 20) mA sink
Maximum Current Output
Accuracy

Max. Power Supply
Temperature Stability
< 23 mA
0.07% or 5 mA , whichever is greater
30 V (in Sink mode)
$5 \mathrm{~m} \mathrm{~A} /{ }^{\circ} \mathrm{C}$
*Note: Maximum source load 750 R

RELAY OUTPUTS

Two relay options are available, either a single changeover or twin independent relays with normally-closed contacts.*1

Alarm Action	Off, High, Low, Deviation, Test	
Hysteresis	Programmable (0 to 100) \%	
Delay Time \approx	Programmable	
Start-up Delay	Programmable	
	AC	DC
Max. Switching Voltage	48V RMS	48V
Max. Current	$1 \mathrm{~A} @ 48 \mathrm{~V}$	1 A @ 30V
Max. Power	60VA	30W
Contact Resistance	< 100 MW	
Operate Time	$<5 \mathrm{~ms}$	
Electrical Life @ Full Load	100,000 operations	
Mechanical Life	$10,000,000$ operations	

*NOTES:
1 Contacts are Normally Closed i.e the contact is closed at power off and when operating in an alarm condition. The contact opens in the absence of an alarm condition. The active function can be reversed in software.
2 Alarm must be continuously present for this period in order to be recognised

GENERAL

Response Time
Filter
Power Requirements
Breakdwon Isolation
Ambient Operating Range
Ambient Storage
Ambient Humidity
EMC Emissions
EMC Immunity
Display Range

300 ms
Programmable or Adaptive
24 VDC ± 10 \% @ 200 mA
1 kV I/P~O/P~PSU
$(-30$ to 60$){ }^{\circ} \mathrm{C}$
(-50 to 85$)^{\circ} \mathrm{C}$
(10 to 90) \% RH
BS EN61326
BS EN61326
-1999 to 9999

SERIAL COMMUNICATIONS

Each MEDACS 2000 module comes supplied with RS485 serial communications using MODBUS rtu protocol as standard.

Baud Rate
Mode
Device Address
$19.2 \mathrm{kB}, 9.6 \mathrm{kB}$ or 1.2 kB
2 wire or 4 wire available Network unique address 1 to 255
(*NOTE: that maximum device no. for Modbus is 247)

MODBUS

Modbus is a Master-Slave based communications protocol. This means that all messages are initiated by the Master device. In general the Master will communicate with one Slave device at a time, although it is possible under certain circumstances for the Master to broadcast to the entire network. The MEDACS units are Slave devices.

The RS485 mode determines the way that the network is connected together. The 2-wire arrangement, shown above, has both transmit and receive signals sharing the same wires. Although this makes most efficient use of the connections and makes wiring simpler, correct operation depends upon critical timing within the Master device.

DEVICE ADDRESSES

Each Slave unit requires a unique address. If two units have the same address on the network, both will respond when this address is accessed by the Master and a data corruption will result. Modbus defines a maximum address number of 247 , but the electrical characteristics of RS485 limit the number of devices on a network to 32; however, buffering the network increases this number.

DIN RAIL SIGNAL CONDITIONERS, WITH TFML.

MEDACS AVAILABILITY TABLE

Part Numbe	er Input		Power Output	Channels	O/P 1	O/P 2	Display
MED2100	U	ü	x	Single	x	x	$\ddot{\text { ü }}$
MED2122	U	$\ddot{\mathrm{u}}$	x	Single	C/O relay	C/O relay	$\ddot{\mathrm{u}}$
MED2113	U	ü	ü	Single	Current O/P	Twin N/C	ü
MED2133	U	$\ddot{\text { ü }}$	x	Single	Twin N/C	Twin N/C	ü
MED2200	U	ü	x	Dual	x	x	x
MED2211	U	ü2	x	Dual	Current O/P	Current O/P	x
MED2213	U	ü2	x	Dual	Current O/P	Twin N/C	x
MED2222	U	ü2	x	Dual	C/O relay	C/O relay	x
MED2233	U	ü2	x	Dual	Twin N/C	Twin N/C	x
MED2300	F	X	x	Single	x	x	ü
MED2322	F	x	x	Single	C/O relay	C/O relay	$\ddot{\mathrm{u}}$
MED2313	F	X	ü	Single	Current O/P	Twin N/C	ü
MED2333	F	x	x	Single	Twin N/C	Twin N/C	ü
MED2400	F	x	x	Dual	X	X	X
MED2411	F	X	x	Dual	Current O/P	Current O/P	x
MED2413	F	X	x	Dual	Current O/P	Twin N/C	X
MED2422	F	x	x	Dual	C/O relay	C/O relay	x
MED2433	F	X	x	Dual	Twin N/C	Twin N/C	X
KEY:	U Twin N/C	=	Universal Temperature and Process Frequency Two independent relays, closed in alarm a				

NOTE: Not all possible combinations are available as shown in the table below

ORDER CODES

The following software packages are available from Status Instruments Ltd which will run on Windows 95, 98,2000 or NT

M-CONFIG	Medacs configuration tool and engineers toolbox. This package is available as a free download from the website
M -OPC*1	Full functionality OPC server
M -SCADA -LITE*2	Scada package providing full animated display facilities and alarm monitoring with data logging and real time/ historical trending for up to 50 data points working with Status products only. Supplied with Medacs drivers.
M-SCADA - PROFESSIONAL*2	As M-Scada-Lite for up to 100 points with additional recipe handling, batch data facilities, on line plant maintenance and report generator. Supplied with Medacs drivers
A variety of waterproof, wall mounted enclosures are available for the Medacs units. Please contact the sales office for more information.	
*1 The OPC server can be used with a host of other proprietary OPC compliant Scada packages.	
*2 Both packages can be up compatible with all	raded to a complete and fully functional Scada system accommodating many thousands of data points and major instrumentation manufacturers and suppliers.

